Nondispersive Solutions to the L-critical Half-wave Equation

نویسنده

  • JOACHIM KRIEGER
چکیده

We consider the focusing L2-critical half-wave equation in one space dimension i∂tu = Du− |u|u, where D denotes the first-order fractional derivative. Standard arguments show that there is a critical threshold M∗ > 0 such that all H1/2 solutions with ‖u‖L2 < M∗ extend globally in time, while solutions with ‖u‖L2 > M∗ may develop singularities in finite time. In this paper, we first prove the existence of a family of traveling waves with subcritical arbitrarily small mass. We then give a second example of nondispersive dynamics and show the existence of finite-time blowup solutions with minimal mass ‖u0‖L2 = M∗. More precisely, we construct a family of minimal mass blowup solutions that are parametrized by the energy E0 > 0 and the linear momentum P0 ∈ R. In particular, our main result (and its proof) can be seen as a model scenario of minimal mass blowup for L2-critical nonlinear PDE with nonlocal dispersion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rayleigh Wave in an Initially Stressed Transversely Isotropic Dissipative Half-Space

The governing equations of a transversely isotropic dissipative medium are solved analytically to obtain the surface wave solutions. The appropriate solutions satisfy the required boundary conditions at the stress-free surface to obtain the frequency equation of Rayleigh wave. The numerical values of the non-dimensional speed of Rayleigh wave speed are computed for different values of frequency...

متن کامل

Solitary Wave solutions to the (3+1)-dimensional Jimbo Miwa equation

The homogeneous balance method can be used to construct exact traveling wave solutions of nonlinear partial differential equations. In this paper, this method is used to construct new soliton solutions of the (3+1) Jimbo--Miwa equation.

متن کامل

Dispersion of Torsional Surface Wave in a Pre-Stressed Heterogeneous Layer Sandwiched Between Anisotropic Porous Half-Spaces Under Gravity

The study of surface waves in a layered media has their viable application in geophysical prospecting. This paper presents an analytical study on the dispersion of torsional surface wave in a pre-stressed heterogeneous layer sandwiched between a pre-stressed anisotropic porous semi-infinite medium and gravitating anisotropic porous half-space. The non-homogeneity within the intermediate layer a...

متن کامل

NONDISPERSIVE RADIAL SOLUTIONS TO ENERGY SUPERCRITICAL NON-LINEAR WAVE EQUATIONS, WITH APPLICATIONS By CARLOS E. KENIG and FRANK MERLE

In this paper we establish optimal pointwise decay estimates for non-dispersive (compact) radial solutions to non-linear wave equations in 3 dimensions, in the energy supercritical range. As an application, we show for the full energy supercritical range, in the defocusing case, that if the scale invariant Sobolev norm of a radial solution remains bounded in its maximal interval of existence, t...

متن کامل

Multi-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation

A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012